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Treatment of bacterial infections currently focuses on choosing an antibiotic that matches a pathogen’s
susceptibility, with less attention paid to the risk that even susceptibility-matched treatments can fail
as a result of resistance emerging in response to treatment. Combining whole-genome sequencing
of 1113 pre- and posttreatment bacterial isolates with machine-learning analysis of 140,349 urinary tract
infections and 7365 wound infections, we found that treatment-induced emergence of resistance could
be predicted and minimized at the individual-patient level. Emergence of resistance was common and
driven not by de novo resistance evolution but by rapid reinfection with a different strain resistant to
the prescribed antibiotic. As most infections are seeded from a patient’s own microbiota, these
resistance-gaining recurrences can be predicted using the patient’s past infection history and minimized
by machine learning–personalized antibiotic recommendations, offering a means to reduce the
emergence and spread of resistant pathogens.

U
rinary tract infections (UTIs) andwound
infections are two of the most com-
mon conditions for which antibiotics
are prescribed (1–3). These infections
are frequently seeded from bacteria

from a patient’s own microbiota; uropath-
ogens can persist for years in a patient’s gut
microbiota, which often acts as a reservoir
for future infections (4–6). Wound infections
are commonly caused by pathogens from a
patient’s skin microbiota, as well as pathogens
from the gut flora (7). Both UTIs and wound
infections can be treated by a range of anti-
biotics, but resistance is widespread among
the causative pathogens, and considerable ef-
forts are being made to develop strategies to
minimize susceptibility mismatches, where an
antibiotic is mistakenly prescribed to treat an
infection resistant to it (8–10).
Yet even when an antibiotic is correctly

prescribed to treat a pathogen sensitive to it
(i.e., susceptibility-matched), treatment is a
double-edged sword: It may clear the ongoing
infection, but it may also select for resistant
pathogens among a patient’s resident micro-
bial population, limiting current and future
treatment efficacy (11, 12). Indeed, prior anti-
biotic use is a strong risk factor for resistant
UTIs and wound infections at the individual-
patient level (8, 13–19). This is especially

problematic because these infections are often
recurrent or chronic, with patients receiving
multiple courses of antibiotics (3, 4, 20, 21).
Despite the importance of the emergence of
resistance during or after treatment, we know
very little about the mechanisms by which it
occurs, and we lack strategies to prevent it (22).
Currently, antibiotic choice focuses on avoiding
antibiotics to which the ongoing infection is
already resistant, however, it remains unknown
if it is possible to select among the susceptibility-
matched antibiotics in ways thatminimize the
risk of treatment-induced emergence of resist-
ance at the individual-patient level.
To understand and predict personal risk of

treatment-induced gain of resistance, we com-
bined whole-genome sequencing of isolates
from same-patient recurrent infections with
analysis of a longitudinal dataset of UTIs and
wound infections collected by Israel’s Maccabi
Healthcare Services (MHS) between June 2007
and January 2019. We identified 215,732 MHS
patients with at least one record of a UTI (de-
fined as a UTI diagnosis made by a physician
followed within 7 days by a positive urine
culture with a bacterial count of >105 colony-
forming units permilliliter) (figs. S1 and S2) and
20,373 MHS patients with at least one record
of a positive wound infection culture. For these
patients, we collected clinical data including
antibiotic susceptibilities and species identi-
fication from all positive cultures, antibiotic
purchases, and patient demographics (age,
gender, and pregnancy status). For UTI pa-
tients, we also collected potential comorbidi-
ties of chronic kidney disease and diabetes
(23) and records of urinary catheterization
(24) (tables S1 and S2). Randomly generated
patient identifiers were used to link these
different patient records. Resistance profiles
were classified in accordance with the Clin-

ical and Laboratory Standards Institute guide-
lines, with intermediate-level resistance grouped
as sensitive. We identified 41,769 untreated
UTI cases [defined as a UTI with no antibiotic
purchases between 7 days before the sample
was taken and the next positive sample or
28 days after the samplewas taken (whichever
comes first)] and 140,349 single-antibiotic treated
cases [where, within 4 days of the sample being
taken, one of the eight most frequently pre-
scribed systemic antibiotics was purchased:
combination trimethoprim/sulfamethoxazole
(sulfa), ciprofloxacin, ofloxacin, combination
amoxicillin/clavulanic acid (CA), cefuroxime
axetil, cephalexin, nitrofurantoin, or fosfomycin]
(table S3). Similarly, for wounds, we identified
7365 infections treatedwith one of the fivemost
frequently prescribed oral systemic antibiotics
(amoxicillin/CA, ciprofloxacin, cefuroxime axetil,
cephalexin, and trimethoprim/sulfa). We fur-
ther categorized these infections by their short-
term clinical outcomes, indicating whether they
resulted in an “early recurrence,” defined as a
second positive sample recorded within 4 to
28 days after the first positive sample (13,517
treated UTIs, 7933 untreated UTIs, and 442
treated wound infections).
Even for treatments correctly matching the

susceptibility of the infection, early recurrence
was common and was associated with in-
fections gaining treatment-specific resistance.
Cases were categorized into six groups on the
basis of whether their initial infection was
sensitive or resistant to the specified antibiotic
(S→ and R→, respectively) and on the basis
of their outcome: recurrence with a sensitive
infection, recurrence with a resistant infec-
tion, or no recurrence (→S, →R, and →∅,
respectively) (Fig. 1A). Although susceptibility-
matched antibiotic treatments (S→) had a
lower overall rate of recurrence than did mis-
matched treatments (R→), recurrences were
still common (UTIs, 9.2%; wound infections,
5.1%) and frequently gained resistance to the
prescribed antibiotic (S→R) (Fig. 1, B and G).
Indeed, 30% of all UTI and 19% of all wound
infection recurrences gained resistance after
antibiotic treatment (S→R), with this frac-
tion strongly varying by antibiotic, reaching
as high as 59% (UTIs) and 27% (wounds) of
recurrent infections after treatment with the
first-line antibiotic ciprofloxacin (Fig. 1, C and
H). These gained-resistance cases were strongly
associated with treatment, with infections pref-
erentially gaining resistance to the prescribed
antibiotic class (Fig. 1, F and I) and temporally
peaking soon after the last day of the antibiotic
course (Fig. 1E and fig. S4). Compared with
untreated cases, susceptibility-matched antibi-
otic treatment had two counteracting effects: It
decreased the overall risk of UTI recurrence (the
sum of S→S and S→R) but increased the risk of
gained-resistance recurrence (S→R) (Fig. 1Dand
figs. S5 and S6).
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The large number of correctly treated infec-
tions that subsequently gained resistance could
be caused by three possible mechanisms: evo-
lution of resistance through mutations, through
dedicated resistance genes, or through rein-
fection with a different strain resistant to the
antibiotic (strain replacement) (Fig. 2A). To dis-
tinguish between these possibilities in UTIs,
we collected 1113 isolates from 510 patients
who experienced early UTI recurrence during
a 4.5-month period (30 November 2017 to
16 April 2018). We focused on Escherichia coli,
which accounts for 70 to 95% of all UTIs (table
S4) (4, 22, 25). Sequencing these E. coli iso-
lates, we analyzed the genetic relatedness
among same-patient isolates collected before
and after treatment and identified any differ-
ences in gene content or mutations in antibi-
otic target and resistance genes (see materials
andmethods in the supplementarymaterials).

The genomic analysis showed that while
the same E. coli strain often persists in early
UTI recurrences that do not gain resistance,
resistance-gaining recurrences were caused by
strain replacement. No cases were identified
of resistance appearing through point muta-
tions in the originally infecting strain. Analyz-
ing strain relatedness, we found that while
reinfection with a different strain was rare in
recurrences that did not change resistance to
the treatment (19% of S→S or R→R cases), it
was the dominant mode in infections gaining
resistance (93% of S→R cases; P = 1 × 10−27

compared with cases that did not gain resist-
ance, Fisher test) (Fig. 2, B and C, and table
S5). For example, despite the ability of E. coli
to readily evolve resistance to ciprofloxacin
through point mutations in the target enzymes
DNA gyrase subunit A (gyrA) and DNA topo-
isomerase IV subunit A (parC) in lab conditions

(26), we found that all UTI cases that gained
resistance were caused by reinfection with a
different strain carrying ciprofloxacin-resistant
alleles of gyrA and parC (31 of 31 S→R cases
were caused by a different strain compared
with 6 of 25 S→S cases; P = 4 × 10−10, Fisher
test) (fig. S7) (27). Similarly, while trimethoprim
resistance can be acquired through point
mutations in the target enzyme dihydrofolate
reductase (DHRF) (28), posttreatment resist-
ance was instead conferred by strain replace-
ment (9 of 12 cases) or by the acquisition of a
gene encoding a trimethoprim-resistant DHFR
enzyme (3 of 12 cases; table S6) (29). Con-
sistentwith untreated cases having amuch lower
rate of gained-resistance recurrence, we found
that strain replacement was rare in untreated
cases (13%; Fig. 2, D and E). Furthermore, even
for antibiotics for whichE. coli resistance is rare,
such as fosfomycin and nitrofurantoin (fig. S8),
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Fig. 1. Posttreatment recurrences are strongly associated with the infec-
tion gaining resistance specifically to the treatment antibiotic. (A) Each
infection case was categorized into one of six possible groups on the basis of the
susceptibility and treatment outcome. (B and G) The overall rate of recurrence
for UTIs (B) and wound infections (G) after either susceptibility-matched or
susceptibility-mismatched antibiotic treatments. (C and H) The percentage of all
antibiotic-treated UTIs (C) and wound infections (H) resulting in early recurrence,
and a breakdown of these early recurrences by their pre- and posttreatment
susceptibility to the treatment antibiotic, for all treated cases and for each of the
most frequently prescribed antibiotics. (D) The rate of early recurrence for UTIs
initially sensitive to the specific antibiotic and either treated with this antibiotic
(solid bars) or untreated (hashed bars). The cases are further categorized

according to whether they recurred still sensitive to the specified antibiotic (dark
blue) or recurred while gaining resistance to it (cyan). Susceptibility-matched
treatment decreases the overall risk of early recurrences (down-pointing arrows)
yet increases the risk of recurrence with gained resistance (up-pointing arrows).
(E) The rate of UTI recurrences occurring on each day after antibiotic treatment
(7-day moving average). Each recurrent case is categorized by pre- and
posttreatment susceptibility to the prescribed antibiotic, as shown in (A). The
dashed vertical line shows the 28-day threshold used to define early recurrences.
(F and I) The net change in susceptibility of early recurrent UTIs (F) and wound
infections (I). For infections treated with each antibiotic (x axis) or untreated
(UTIs), the percentage of gain of resistance (cyan) minus loss of resistance
(magenta) to each specified antibiotic is shown (y axis).
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early recurrence with gained resistance after
treatment of an initially sensitive E. coli infec-
tion was strongly associated with reinfection
with a different resistant strain, yet this time
of an entirely different species (Fig. 2F). Over-
all, 44% of gained-resistance UTI recurrences
were caused by a different species (Fig. 2G). A
similar pattern was observed for wound infec-
tions: Although the rate of change of species
was low among recurrent wound infections
that remained sensitive to the treatment anti-
biotic (fig. S9), in most infections that gained

resistance (78%), the species that caused the
gain of resistance was not present in the orig-
inal infection (Fig. 2G). Together, these results
suggest that selection for existing resistant
strains rather than de novo evolution is the
predominant mechanism of treatment-induced
emergence of resistance.
Given that posttreatment resistance was

typically caused by strain or species replace-
ment rather than by spontaneous, and there-
fore unpredictable, mutations, we wondered
whether emergence of resistance may in fact

be predicted at the individual-patient level. As
strains are known to recur across same-patient
infections even years apart (6), we hypothe-
sized that patients with a history of infections
with strains resistant to a given antibiotic are
at higher risk of gained-resistance recurrence
after susceptibility-matched treatment with
that antibiotic (Fig. 3A). To test this hypothesis,
we performed multivariate logistic regressions
of the risk of recurrence with gained-resistance
given patient demographics and past infec-
tion history among all infections treated with
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Fig. 2. Genomic analysis of infecting pathogens
before and after antibiotic treatment. (A) Infec-
tions that recurred with gained resistance after
treatment (cyan) could be a consequence of
acquiring resistance-conferring mutations (green
lightning bolt), resistance-conferring genes (yellow
lightning bolt), or reinfection with a different strain
resistant to the antibiotic (dashed arrow). (B and
C) Phylogenetic trees of E. coli urine culture isolates
collected from patients who experienced early
recurrence after treatment with ciprofloxacin (B) or
trimethoprim/sulfa (C), with isolate resistance and
sensitivity to the prescribed antibiotic indicated by
gray and white boxes, respectively. Same-patient
isolates are connected with arrows whose color
and style represent change in infection susceptibility
and mechanism of gain of resistance [as defined in
(A)]. Histograms show the genetic distance, in
number of single-nucleotide variations (SNVs),
between these same patient isolate pairs, again
categorized by infection susceptibility and mecha-
nism of gain of resistance [as defined in (A)].
Vertical dashed lines represent the threshold used
to define same-strain versus different-strain recur-
rences. (D and E) Histograms of the genetic distance
in SNVs between same-patient isolates in untreated
cases categorized by infection susceptibility to
ciprofloxacin (D) or trimethoprim/sulfa (E). (F) The
percentage of E. coli infections treated with a
susceptibility-matched antibiotic that resulted in
early recurrence with different non–E. coli species
(bar patterns), for recurrences that remained sensitive
(dark blue) or gained resistance (cyan) to the prescribed
antibiotic. (G) The percentage of gained-resistance
recurrences in all UTIs and wound infections that were
caused by reinfection with a different species.
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Fig. 3. Personalized, antibiotic-specific predictions of treatment-induced emer-
gence of antibiotic resistance. (A) Schematic showing the possible outcomes of
susceptibility-matched antibiotic treatment for patients with a recorded history
of prior infection susceptibility to the currently prescribed antibiotic. (B) Odds ratio
of risk of early recurrence that gained resistance (cyan) or remained sensitive
(dark blue) given the patient’s prior history of resistant infections (binary 1/0: any
prior resistance to the prescribed antibiotic, or no prior resistance to the prescribed
antibiotic). For each antibiotic, all susceptibility-matched treated cases for patients
with any prior infections within the past 3 years are considered. Odds ratios are
adjusted for demographics (age, gender) and potential risk factors (pregnancy,
catheter use). (C) The adjusted odds ratio of early recurrence given the patient’s
prior history of resistant infections for all antibiotic treatments combined for both
UTIs and wound infections. (D) Timeline of two example patients showing the
susceptibilities of their current (t = 0) and prior (t < 0) infections for each antibiotic
(white, sensitive; gray, resistant), as well as their ML-predicted probability of
recurrence with gained resistance upon treatment of their current infection with each
of the antibiotics (circles, green-to-red colormap). Despite both patients being

treated with the same antibiotic to which their infection was sensitive, ciprofloxacin
(blue arrow), they had very different ML personal predicted risk of gaining
posttreatment ciprofloxacin resistance and indeed varied accordingly in their
treatment outcome. (E) The percentage of UTIs within the 14-month test period that
gained resistance after treatment for cases prescribed an antibiotic that was not
recommended (“unrecommended,” red, 15% highest predicted risk) or recom-
mended (green, 85% lowest predicted risk) by the ML algorithm (these results
are robust to the choice of grouping intermediate-level resistance with resistant,
fig. S16). (F and G) The overall predicted probability of gaining resistance for all UTIs
(F) and wound infections (G) during the test period for four different antibiotic
prescription methods: (i) the actual antibiotic prescribed by the physician, (ii) an
algorithm that randomly chooses an antibiotic but avoids antibiotics to which
the patient had past resistance, and the ML recommendation either (iii) unconstrained
or (iv) constrained such that each antibiotic is recommended at the exact same
frequency as prescribed by the physicians. The dashed line represents the actual
gained-resistance rate for the physician-prescribed antibiotics during the test
period. *P < 0.05; **P < 0.005; ***P < 0.0005.
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a susceptibility-matchedantibiotic (136,047UTIs
and 5821 wound infections). Despite all of these
cases being treated “correctly,” that is, with a
susceptibility-matched antibiotic, their risk
of recurrence with gained resistance was not
uniform: Patients with past infections resist-
ant to the currently prescribed antibiotic
were at much higher risk of recurring with
gained resistance to the treatment than were
patients whose previous infections were sen-
sitive (Fig. 3, B and C; see tables S7 and S8 for
regression coefficients). The association between
the susceptibility of past infection and the risk
of resistance emerging remained significant
even for prior infections dating up to 4 years
before the current UTI (fig. S10). In contrast,
there was no or a much weaker association
between past infection susceptibility and risk
of early recurrence without gain of resistance,
showing that this approach specifically predicts
the emergence of resistance rather thanmerely
the risk of early recurrence. A patient’s past in-
fection susceptibilitywasmuchmore predictive
than their past antibiotic purchases, which is
consistent with within-host selection for strains
persisting in the microbiota rather than de
novo resistance evolution driving treatment-
induced gain of resistance (fig. S11). Finally,
beyond the important contribution of personal
infection history, we also note the contribution
of age and gender to risk of treatment-induced
gain of resistance (tables S7 and S8).
Because some patients were at high risk of

their infection gaining resistance to the treat-
ment antibiotic, we asked whether the risk of
such gained-resistance recurrences may be
reduced with an alternative antibiotic. We de-
velopedmachine learning (ML) algorithms for
personalized antibiotic recommendations
that minimize the predicted risk of treatment-
associated emergence of resistance for both
UTIs and wound infections (Fig. 3D). For each
antibiotic, we trained a logistic regressionmodel
to predict the risk of acquiring resistance during
or soon after treatment on the basis of patient
demographics (age, gender), potential risk fac-
tors (pregnancy, catheter use forUTIs), and their
record of prior infections, including the number
of past sensitive and resistant isolates. Trained
on an initial period and then tested on a tem-
porally separated test period (UTIs: 14 months;
wound infections: 30 months), the models
predict the risk of resistance emergence well
(the area under the curve ranged from 0.89 for
nitrofurantoin to 0.62 for amoxicillin/CA in
UTIs, and from 0.96 for amoxicillin/CA to 0.58
for cefuroxime in wound infections; ofloxacin
was not included, because it was not routinely
measured during the test period; fig. S12).
More practically, binarizing the patient-specific
ML predictions for UTIs into high-risk treat-
ments (“unrecommended,” 15% highest ML-
predicted risk of gained-resistance recurrence)
and lower-risk treatments (“recommended,”

all others), we found that for every antibiotic,
patients for whom the prescribed antibiotic
was classified as unrecommended by the ML
algorithm acquired antibiotic resistance at a
significantly higher rate than did those for
whom the antibiotic was recommended, even
though all of these cases were treated “correctly”
with a susceptibility-matched antibiotic (Fig.
3E; the trends are robust with respect to the
recommendation threshold; fig. S13).
Analyzing all susceptibility-matched treated

cases in the test period, we found that in most
cases there was an alternative susceptibility-
matched antibiotic that had a lower patient-
specific predicted risk of resistance emerging
compared with the antibiotic prescribed by
the physician (77% of UTIs and 76% of wound
infections). Choosing for each patient the
antibiotic with the lowest ML-predicted risk
of emergence of resistance (ML recommended)
reduces the overall risk of emergence of resist-
ance by 70% for UTIs and 74% for wound
infections compared with the risk for physician-
prescribed treatments (Fig. 3, F and G). Given
that many factors contribute to the rate at
which physicians prescribe each antibiotic,
such as antibiotic efficacy, cost, ease of use,
and side effects, we also developed a con-
strained antibiotic recommendation model that
minimizes the risk of emergence of resistance
while preserving the same prescription fre-
quency of each antibiotic as prescribed by
physicians during the test period (fig. S14) (14).
Even these constrained antibiotic recommen-
dations, which merely permute the physician-
prescribed antibiotics among patients, can
reduce the risk of resistance emerging after
treatment by 48% for both UTIs and wound in-
fections compared with the physician-prescribed
antibiotics (Fig. 3, F and G). To demonstrate
that these constrained recommendations could
be made on a case-by-case basis, we also show
that the model remains effective when con-
strained to the physician prescription frequency
during a temporally separated period before
the finalmodel evaluation period (fig. S14).We
note that a simpler algorithm that randomly
chooses an antibiotic but avoids antibiotics to
which the patient had past resistance can still
reduce the risk of resistance emerging after
treatment, albeit at a lower frequency than
either of the ML models, which is consistent
with the contribution of other factors includ-
ing age, gender, and the more quantitative
representation of past infections (Fig. 3, F and
G). Furthermore, analyzing the distribution
of ML-recommended antibiotics for subsets of
patients, such as those with past resistance to
a specific antibiotic, may help guide treatment
recommendations more broadly (fig. S15). Im-
portantly, the constrainedMLmodels also reduce
overall predicted risk of early recurrence (the
sum of S→S and S→R), showing that this per-
sonalized approach not only reduces gained-

resistance recurrences but, by doing so,may also
reduce the overall recurrence risk (fig. S17).
While much effort is being invested in

methodologies for matching antibiotic treat-
ment to infection susceptibility, susceptibility-
matched treatments often fail, as they select for
emergence of resistance by means of reinfec-
tion with different strains specifically resistant
to treatment. The strong association between
such treatment-induced selection for resistance
and personal history of past resistant infections
suggests a patient-specific strain reservoir. Given
the known role that uropathogens and wound
pathogens persisting in a patient’s microbiota
have in seeding new infections (4–6, 30, 31)
and the collateral effect that antibiotics can
have on a patient’s microbiome (32–34), it will
be interesting to see whether these emerging
resistant strains can be detected in a patient’s
fecal or skin flora. Regardless of the exact
source of these reinfecting resistant strains,
our results show that a patient’s past infection
susceptibility data and patient demographics
can be used to predict early recurrence with
gained resistance after susceptibility-matched
antibiotic treatment. We hope these results
will serve as a basis for a personalized treat-
ment approach that minimizes the selection
and spread of resistant pathogens at both the
individual-patient and population levels.
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Personal histories of past resistance
A serious infection may initially be diagnosed as antibiotic susceptible but subsequently become drug resistant—
and life threatening. Rather than de novo resistance mutation occurring, it is more likely that a resistant strain or
species persisting in the patient’s gut or skin replaced the susceptible strain. From this starting point, Stracy et al.
built machine-learning models that predict individual risks of gaining resistance to specific antibiotics using 8 years
of records on more than 200,000 patients’ microbiome profiles (see the Perspective by Lugagne and Dunlop). Data
on antibiotic use for urinary tract and wound infections were used to train the algorithms and to develop personalized
antibiotic treatment strategies. For most patients, there was an alternative susceptibility-matched antibiotic that had a
lower predicted risk of resistance emerging compared with the antibiotic prescribed by the physician. —CA
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